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Abstract

Integrating the outputs of multiple classifiers via combiners or meta-learners has led to sub-
stantial improvements in several difficult pattern recognition problems. In the typical setting
investigated till now, each classifier is trained on data taken or resampled from a common data
set, or randomly selected partitions thereof, and thus experiences similar quality of training
data. However, in distributed data mining involving heterogeneous databases, the nature, qual-
ity and quantity of data available to each site/classifier may vary substantially, leading to large
discrepancies in their performance. In this chapter we introduce and investigate a family of
meta-classifiers based on order statistics, for robust handling of such cases. Based on a mathe-
matical modeling of how the decision boundaries are affected by order statistic combiners, we
derive expressions for the reductions in error expected when such combiners are used. We show
analytically that the selection of the median, the maximum and in general, the i** order statistic
improves classification performance. Furthermore, we introduce the trim and spread combin-
ers, both based on linear combinations of the ordered classifier outputs, and empirically show
that they are significantly superior in the presence of outliers or uneven classifier performance.
So they can be fruitfully applied to several heterogeneous distributed data mining situations,
specially when it is not practical or feasible to pool all the data in a common data warehouse

before attempting to analyze it.



1 Mining of Distributed Data Sources

An implicit assumption in traditional statistical pattern recognition and machine learning algo-
rithms is that the data to be used for model development is available as a single flat file. This
assumption is valid for virtually all popular benchmark datasets such as those available from
ELENA, Statlog or the UCI machine learning repository. Such datasets are small or medium
sized, requiring a few megabytes at most. Thus the algorithms typically also assume that the en-
tire data can fit in main memory, and do not address computational issues regarding scalability
and “out-of-core” operations.

The tremendous explosion in the amount of data gathering and warehousing in the past few
years has generated very large and complex databases. Any effort in mining information from
such databases has to address the fact that
(i) data may be kept in several files as in interlinked relational databases, and information
needed for decision making may be spread over more than one file. For example, the concept of
“collective data mining” [Kargupta and Park, 2000] explicitly addresses “vertical partitioning”
situations where the features or variables relevant to a classification decision are spread over
multiple files, each accessible to only one classifier.

(ii) the files may be spread across several disks or even across different geographical locations,
and

(iii) the statistical quality of data may vary widely. For example the percentage of cases involving
financial or health-care fraud varies in different regions, and so does the amount of missing
information.

One can argue that by transfering all data to a single warehouse and performing a series
of merges and joins, one can get a single (albeit very large), flat file. A traditional algorithm
can be used after randomizing and subsampling this file. But in real applications this approach
may not be feasible because of the computational, bandwidth and storage costs. In certain
cases, it may not even be possible for a variety of practical reasons including security, privacy,
proprietary nature of data, need for fault tolerant distribution of data and services, real-time
processing requirements, statutary constraints imposed by law, etc. [Prodromidis et al., 2000].
Then there are two options. If the owners of the individual databases are willing to provide high
level or summary information/decisions such as local classification estimates, and transmit this
information to a central location, then a meta-learner can be applied to the component decisions
to come up with a final, composite decision. Note that such high level information not only
has reduced storage and bandwidth requirements, but also maintains the privacy of individ-

ual records [DuMouchel et al., 1999]. Otherwise one has to resort to a distributed computing



framework such as the emerging field of COllective INtelligence (COIN), wherein techniques
are developed such that local and independent computations can still increase a desired global
utility function [Wolpert and Tumer, 1999].

The first option leads to several issues reminiscent of studies in decision fusion [Dasarathy, 1994]
applied largely to multi-sensor fusion and distributed control problems. It is also related to the
theory of ensembles [Sharkey, 1996] and integration of multiple learned models [Chan et al., 1996].
But there are substantial new aspects that need to be addressed in a distributed data mining
context.

This chapter is rooted in the ensemble framework and shows how order statistics can be used
in the design of a “meta-learner” that examines the outputs of multiple distributed classifers
and provides a final decision. Order statistics is one of the key tools of robust statistics, tailored
to handling data with outliers. In a distributed data mining scenario in which there is wide
variability among the individual classifers because of the underlying quality of the local data
that they examine, a meta-learner should be able to tolerate a few outlier classifier results.
The robust properties of order statistics based approaches such as median filtering and m-
estimators [Arnold et al., 1992], have been observed in many disciplines. Thus they are an
obvious candidate for meta-learning in such environments.

The next section provides a brief review of the meta-learning framework for classification
to put the proposed techniques in perspective. Section 3 summarizes the relationship between
classifier errors and decision boundaries and provides the necessary background for mathemati-
cally analyzing order statistic combiners [Tumer and Ghosh, 1996a]. Section 4 introduces simple
order statistic combiners. Based on these concepts, in Section 5 we propose two powerful com-
biners, trim and spread, and derive the amount of error reduction associated with each. In
Section 6 we present the performance of order statistic combiners on several datasets. Section 7
discusses the implications of using linear combinations of order statistics as a strategy for pooling

the outputs of individual classifiers.

2 A Brief History of Multi-Learner Systems

The idea of integrating multiple models for the same problem, has been examined for a long
time. The main goal is to obtain a better composite global model, with more accurate and
reliable estimates or decisions. Some notable early systems include Selfridge’s Pandemonium
[Selfridge, 1958] where a head-deamon would select the deamon that “shouted the loudest”, and
Nilsson’s committee machines. A strong motivation for such systems was voiced by Kanal in

his classic 1974 paper [Kanal, 1974]:



“It is now recognized that the key to pattern recognition problems does not lie
wholly in learning machines, statistical approaches, spatial, filtering,..., or in any
other particular solution which has been vigorously advocated by one or another
group during the last one and a half decades as the solution to the pattern recognition
problem. No single model exists for all pattern recognition problems and no single
technique is applicable to all problems. Rather what we have is a bag of tools and a

bag of problems.”

In the late seventies, much work was done on combining linguistic and statistical models, and on
combining heuristic search with statistical pattern recognition. Subsequently, similar sentiments

on the importance of multiple approaches were also voiced in the AI community [Minsky, 1991]:

“ To solve really hard problems, we’ll have to use several different representations.....It
is time to stop arguing over which type of pattern-classification technique is best
..... Instead we should work at a higher level of organization and discover how to build
managerial systems to exploit the different virtues and evade the different limitations

of each of these ways of comparing things.”

Integration of multiple data sources and/or learned models can now be found in several dis-
ciplines, for example, the combining of estimators in econometrics [Granger, 1989], evidences in
rule-based systems [Barnett, 1981] and multi-sensor data fusion [Dasarathy, 1994]. Of course,
one can find numerous examples in the human central nervous system [Shepherd, 1979], as well as
in some large engineering systems such as those that demand fault tolerance or employing control
mechanisms that may need to function in different operating regimes [Narendra et al., 1995]. In
particular, multiple models for nonlinear control has a long tradition (see http://www.itk.ntnu.no/ansatte/Johansen.
Tor.Arne/mmamc/address.html for a detailed list of researchers in this area). Hybridization in
a broader sense is seen in efforts to combine two or more of neural network, Bayesian, GA, fuzzy
logic and knowledge-based systems [Aggarwal et al., 1996, Taha and Ghosh, 1997]. The goal
is again to incorporate diverse sources and forms of information and to exploit the somewhat
complementary nature of different methodologies.

Figure 1 shows a generic diagram of an ensemble, the simplest and most well understood type
of multi-learner systems. Each component learner is a regressor or classifier, trying to solve the
same task. While data ultimately originates from an underlying universal set X, each learner
may receive somewhat different subsets of the data for “training” or parameter estimation (as in
bagging [Breiman, 1994] and boosting [Drucker et al., 1994]), and may be using different feature
extractors (fs) on the same raw data. For example, in our earlier work on sonar classification

[Ghosh et al., 1992a], Fourier, wavelet and autoregressive coefficients extracted from the same
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Figure 1: Generic architecture of a multi-learner system for regression or classification

preprocessed time series were used respectively for three different classifier types.

Along with selection of training samples and feature extractors, one needs to decide what
types of learners to use and how many, and finally, how to design the meta-learner. There are
also larger issues of how to train the components given that they are part of a bigger system,
and to estimate the overall gains achievable.

The simplest meta-learner is the combiner, where the output y is determined solely from
the outputs of the individual learners. In the past few years, a host of experimental re-
sults from both neural network and machine learning communities show that combining the
outputs of multiple regressors or classifiers via (weighted) averaging, majority vote, product
rule, entropy, etc., provides statistically significant improvement in performance along with
tighter confidence intervals. Moreover, theoretical analysis has been developed for both regres-
sion [Perrone, 1993, Hashem and Schmeiser, 1993] and classification[Tumer and Ghosh, 1996a,
Tumer and Ghosh, 1999, to estimate the gains achievable.

Beyond simple combiners are meta-learning methods such as arbitration [Chan and Stolfo, 1997]
and stacking [Wolpert, 1992]. Also in this category are divide-and-conquer approaches, where
relatively simple learners specialize in different parts of the input-output space, and the total
model is a (possibly soft) union of such simpler models. Techniques of modular learning in-
clude “mixtures-of-experts”, local linear regression, CART/MARS, adaptive subspace models,

etc. [Jordan and Jacobs, 1994, Ramamurti and Ghosh, 1999, Holmstrom et al., 1997]. What



distinguishes all these models from simple combiners is that the meta-learner’s actions now also
depends on the current input and/or the target values, i.e. the dotted lines in Fig. 1 are also
used.

The simple combining methods are best suited for problems where the individual classifiers
perform the same task, and have comparable success. However, such combiners are more sus-
ceptible to outliers and to unevenly performing classifiers. On the other hand, the more general
meta-learners are conceptually more powerful but are vulnerable to all the problems associated
with the added learning (e.g., overparameterizing, lengthy training time). They may also re-
quire access to the entire input database which may be impractical in a distributed data mining
environment.

The performance of classifier ensembles has been spectacular. Brieman calls the combi-
nation of decision tree classifiers with boosting the most significant development in classifier
design in this decade. Indeed, ensemble methods are even becoming available in commercial
data mining tools such as SAS Enterprise Miner Version 3.0. To see intuitively why ensembles
have been so effective, note that different types of classifiers have different “inductive biases”
[Geman et al., 1992, Mitchell, 1997], and thus, in general, they do not generalize in identical
ways even when they are trained on the same data set, and have comparable performance
on a test set. Traditionally, the classifier perceived as the “best”, as indicated by a suitable
scoring function such as a cross-validation based estimation of the true generalization error, is
selected. This means that the other classifiers that had been designed during the model explo-
ration/development phase, get discarded. But this results in a potential loss of useful information
and effort. An ensemble can effectively make use of such complementary information to reduce
model variance [Perrone, 1993, Tumer and Ghosh, 1999] and in certain situations it also re-
duces bias as shown by the theory of large margin classifiers [Bartlett and Shawe-Taylor, 1998].
It works best when each learner is well trained, but different learners generalize in different ways,
i.e., there is diversity in the ensemble [Krogh and Vedelsby, 1995]. Diversity may be induced
through different presentations of the input data, as in bagging, variations in learner design, or
by adding a penalty to the ouputs to encourage diversity.

For large data sets, there is also a computational reason for using meta-learners, namely,
it can make certain inductive learners fairly scalable to large data sets [Chan and Stolfo, 1997,
Provost and Kolluri, 1999, Provost, 2000]. In [Chan and Stolfo, 1997] each component classifier
uses a randomly chosen subset of the entire data set, and the decision tree classifiers can operate
in parallel. This proves quite effective as overall computation can be greatly reduced with little

loss in performance. A beneficial side-effect of using smaller datasets for decision tree classifiers



is that the classifiers obtained are smaller in size [Oates and Jensen, 1998]. These two as well as
other scalability techniques for decision tree based classifiers are covered in a nice recent survey
[Provost and Kolluri, 1999].

A fundamental assumption in all the multi-classifier approaches mentioned above is that
the designer has access to the entire data set, which can be used in its entirety, resampled in
a random (bagging) or weighted (boosting) way [Breiman, 1999], or randomly partitioned and
distributed. Thus, except for boosting situations, each classifier sees training data of comparable
quality. If the individual classifiers are then appropriately chosen and trained properly, their
performances will be (relatively) comparable in any region of the problem space. So gains from
combining are derived from the diversity among classifiers rather that by compensating for weak
members of the pool.

This assumption is clearly invalid for distributed data mining using heterogenous sites
[Kargupta and Park, 2000]. Such real-life conditions often result in a pool of classifiers that
may have significant variations in their overall performance. Moreover, they may lead to con-
ditions where individual classifiers have similar average performance, but substantially different
performance over different parts of the input space. In such cases, combining is still desirable,
but neither simple combiners nor meta-learners are particularly well-suited for the type of prob-
lems that arise. For example, the simplicity of averaging the classifier outputs is appealing, but
the prospect of one poor classifier corrupting the combiner makes this a risky choice. Weighted
averaging of classifier outputs appears to provide some flexibility [Hashem and Schmeiser, 1993,
Merz and Pazzani, 1997]. Unfortunately, the weights are still assigned on a per classifier basis
rather than a per sample or per class basis. If a classifier is accurate only in certain areas of the
input space, this scheme fails to take advantage of the variable accuracy of the classifier in ques-
tion. Using a meta-learner that provides different weights for different patterns can potentially
solve this problem, but at a considerable cost. Also, as explained earlier, the off-line training of
a meta-learner using substantial amount of data outputted by geographically distributed clas-
sifiers, may not be feasible or even allowable. In addition to providing robustness demanded in
such situations, the order statistic combiners presented in this work also aim at bridging the
gap between simplicity and generality by allowing the flexible selection of classifiers without the

associated cost of training meta-classifiers.



3 Error Characterization in a Single Classifier

In this section we summarize the approach and results of [Tumer and Ghosh, 1996a, Tumer and Ghosh, 1999]!,
that quantify the effect of inaccuracies in estimating a posterior class probabilities on the clas-
sification error for a single classifier. This background is needed to characterize and understand
the impact of order statistics combiners, as described in Sections 3 and 4.
It is well known that, given one-of-L desired outputs and sufficient training samples reflecting
the class priors, the outputs of certain classifiers trained to minimize a mean square or cross-
entropy error criteria, approximate the a posteriori probability densities of the corresponding
classes [Richard and Lippmann, 1991, Ruck et al., 1990]. Based on this result, one can model

the ith output of the mth such classifier as:

[i*(x) = pi(z) + " (2), (1)

where p;(z) is the true posterior for ith class on input z, and €*(z) is the error of the mth

classifier in estimating that posterior.
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Figure 2: Error regions associated with approximating the a posteriori probabili-

ties [Tumer and Ghosh, 1996a).

Now, let us decompose the error into two parts: €*(z) = S + n*(z). The first component

does not vary with the input, and provides an offset, or systematic error for each class. The

!This and other related papers can be downloaded from URL http://www.lans. ece.utezas. edu.



second component gives the variability from that systematic error, for each x in each class,

and has zero mean and variance U;‘;m(z). These two components of the error are similar to

i

the bias and variance decomposition for a quadratic loss function given in [Geman et al., 1992],
although they are at the individual input level. We will therefore refer to classifiers as “biased”
and “unbiased” implying B;* # 0 for some k,m, and B* = 0 , Vk,m, respectively. Let b™
denote the offset between the ideal class boundary, * (based on p;(x) = p;j(z)) and the realized
boundary, z}* (based on f/"(z) = fJ*(z)), as shown in Figure 2 [Tumer and Ghosh, 1996a].

This boundary offset (b™ = z}* — z*) has mean and variance given respectively by:

g 20 ©)

8

and

2 2
o T T Oy (@)

bm =

; 3)

where s = p(z*) — p;(z*) as introduced in [Tumer and Ghosh, 1996a].

52

Let us further denote the probability density function of this boundary offset by fy(z). The
expected model error associated with the selection of a particular classifier m, can then be
expressed as:

o
Bl = [ AORO)D, @)
—0o0
where A(b) = f;:“ (pj(z) — pi(z)) dz is the error due to the selection of a particular deci-
sion boundary. In general, it is not possible to obtain the density function for the boundary
offset without making assumptions on the distributions of the errors. However, a first order
approximation, derived in [Tumer and Ghosh, 1996a], leads to:

> 1
B = [ 5¥shit)a. 5

—o0
Let us define the first and second moments of the boundary offset as follows:
My = / zfy(zx)de  and M, = / 22 fy(x)dx.
—c0 —o0

If the individual classifiers are unbiased, the offset b™ of a single classifier has M; = 0 and

My = 02, leading to:

s Mo $02m
rTnnodel = 2 = 2b . (6)
Now, if the classifiers are biased, the variance of b is left unchanged (given by Equation 3), but
the mean becomes 8 = @ In other words, we have M; = ™ and 0. = My — Mi?,

leading to the following model error:

Toiet®) = 52 = 2 (03 + (57, ¢




To emphasize the distinction between biased and unbiased classifiers, the model error will be
given as a function of 5 for biased classifiers. A more detailed derivation of class boundaries and
error regions is presented in [Tumer and Ghosh, 1996a]. For analyzing the error regions after
combining and comparing them to the single classifier case, one needs to determine how the first
and second moments of the boundary distributions are affected by combining. The following

sections focus on obtaining those values for order statistics based combiners.

4 Combining Multiple Classifiers through Order Statistics

4.1 Basic Concepts

In this section, we briefly discuss some basic concepts and properties of order statistics. Let
X be a random variable with probability density function fx(-), and cumulative distribution
function Fx(-). Let (X1, X2, -+, Xn) be a random sample drawn from this distribution. Now,

let us arrange them in non-decreasing order, providing;:
Xin < Xon < oo < XN

The ith order statistic denoted by X;.n, is the ¢th value in this progression. The cumulative

distribution function for the smallest and largest order statistic can be obtained by noting that:
Fxy.y () = P(Xniv < 2) = 1L, P(Xiny < 2) = [Fx (2)]Y
and:

FXI:N(':C) = P(XI:N < '73) =1- P(XI:N > '7") =1- Hz’:lp(Xi:N > .73)

1-(1 -0, P(Xun <z)=1-[1 - Fx()]"

The corresponding probability density functions can be obtained from these equations. In
general, for the ¢th order statistic, the cumulative distribution function gives the probability
that exactly ¢ of the chosen X’s are less than or equal to z. The probability density function of
X;.n is then given by [David, 1970]:

N!

=D (N =) [Fx (@) [1 = Fx (2)]V "~ fx () . (8)

in:N (.CL') =

This general form however, cannot always be computed in closed form. Therefore, obtaining
the expected value of a function of z using Equation 8 is not always possible. However, the
first two moments of the density function are widely available for a variety of distributions
[Arnold et al., 1992]. These moments can be used to compute the expected values of certain

specific functions, e.g., polynomials of order less than two.
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4.2 Combining Unbiased Classifiers through Order Statistics

Now, let us turn our attention to order statistics (OS) combiners. For a given input z, let the

network outputs of each of the IV classifiers for each class ¢ be ordered in the following manner:

iN@) < V(@) < o < ATV ().

Then one constructs the kth order statistic combiner, by selecting the kth ranked output for
each class (f¥V(x)), as representing its posterior.

In particular, max, med and min combiners are defined as follows:

free@) = V@), (9)
FEN @y 4 E TNy
me : e if N is even
fz' d(m) = N+1l.n 2 (10)
i T (z) if NV is odd,
me) = (@) (11)

These three combiners are relevant because they represent important qualitative interpretations
of the output space. Selecting the maximum combiner is equivalent to selecting the class with
the highest posterior. Indeed, since the network outputs approximate the class a posteriori
distributions, selecting the maximum reduces to selecting the classifier that is the most “certain”
of its decision. The drawback of this method however is that it can be compromised by a single
classifier that repeatedly provides high values. The selection of the minimum combiner follows
a similar logic, but focuses on classes that are unlikely to be correct, rather than on the correct
class. Thus, this combiner eliminates less likely classes by basing the decision on the lowest
value for a given class. This combiner suffers from the same ills as the maz combiner. However,
it is less dependent on a single error, since it performs a min-max operation, rather than a
max-max2. The median classifier on the other hand considers the most “typical” representation
of each class. For highly noisy data, this combiner is more desirable than either the min or maz
combiners since the decision is not compromised as much by a single large error.

The analysis that follows does not depend on the particular order statistic chosen. Therefore,
we will denote all OS combiners by f2*(z) and derive the model error, E2? The network

model*

output provided by f2*(z) is given by:

i (@) = pr(z) + €°(2), (12)

Let us first investigate the zero-bias case (B = 0, Vk), where we get €p*(z) = n7°(x).

*Recall that the pattern is ultimately assigned to the class with the highest combined output.
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Proceeding as in Section 3, the boundary b°% is shown to be:

n{* () — 03 (zp)
- )

bOS —

(13)

For i.i.d. my’s, the first two moments will be identical for each class. Moreover, taking the order
statistic will shift the mean of both 7?* and n?® by the same amount, leaving the mean of the

difference unaffected. Therefore, b°° will have zero mean, and variance:

) 2 aggs 2 aagin )
Ubos = 32 = 32 = anm s (14)

where « is a reduction factor that depends on the order statistic and on the distribution of b. For
most distributions, a can be found in tabulated form [Arnold et al., 1992]. For example, Table 1
provides « values for all order statistic combiners, up to 10 classifiers, for a Gaussian distribution
[Arnold et al., 1992, Sarhan and Greenberg, 1956]. (Because this distribution is symmetric, the
a values of I and k where | + k = N + 1 are identical, and listed in parenthesis).

Returning to the error calculation, we have: M¢* = 0, and M$* = o2, , providing:

08 2 2
0s _ SMQ _ 80hos _ SQ0pm — E™
model — 2 - 2 - 2 = L odel -

(15)

Table 1: Reduction factors a for the Gaussian Distribution, based on [Sarhan and Greenberg, 1956].

N k a | N k Q N k Q
1 1 1.00 | 6 2(5) .280 1(09) .357
2 1(2) .682 3(4) .246 2 (8) .226
3 1(3) .560 1(7) 3929 3(7) .186
2 449 | 7 2(6) .257 4 (6) .171
4 1(4) .492 3(5) .220 5 .166
2(3) .360 4 210 1(10) .344
1(5) .448 1(8) .373 2(9) .215
5 2#4) 312 |8 2(7) 239 |10 3(8 .175
3 .287 3(6) .201 4 (7) .158
6 1(6) .416 4 (5) .187 5(6) .151

Equation 15 shows that the reduction in the error due to using the OS combiner instead
of the mth classifier is directly related to the reduction in the variance of the boundary offset
b. Since the means and variances of order statistics for a variety of distributions are widely

available in tabular form, the reductions can be readily quantified.
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4.3 Combining Biased Classifiers through Order Statistics

In this section, we analyze the error regions for biased classifiers. Let us return our attention
to b°%. First, note that the error terms can no longer be studied separately, since in general
(a+ )% # a® + b°*. We will therefore need to specify the mean and variance of the result of
each operation®. Equation 13 becomes:

oo _ (Bit ml@)* = (85 + m (@)

(16)

Let 8 = % Eﬁzl By be the mean of classifier biases. Since n}*’s have zero-mean, By, + nx(z3)
has first moment £;, and variance af&n + af;in, with U'%Ln = E[(B)?] - 81”, where [-] denotes the
expected value operator.

Taking a specific order statistic of this expression will modify both moments. The first
moment is given by By, + u°%, where u°° is a shift which depends on the order statistic chosen,

but not on the class. Then, the first moment of b°° is given by:

Bi+p>) = (Bi+p”) _ Bi—Bi _ 3. (17)

S S

Note that the bias term represents an “average bias” since the contributions due to the order
statistic are removed. Therefore, reductions in bias cannot be obtained from a table similar to
Table 1.

Now, let us turn our attention to the variance. Since S + 1} () has variance 0,27? + azkm,

it follows that (By +x (23))°” has variance o500 = a(ojm +03m), where a is the factor discussed

7
in Section 4.2. Therefore, the variance of b°¢ is given by:

2 2 2 2
P Opgs + Tpes 2 aa%;n N a(aﬂzn + Uﬁ]m)
bee 52 52 52
_ 2 2
= a(oym +0pm), (18)
5 Thmtogm . . : ; i
where 03, = ——>—/- is the variance introduced by the systematic errors of different classifiers.

We have now obtained the first and second moments of 5°°, and can compute the model

error. Namely, we have M¢* = B and 07,, = M$® — (M$*)?, leading to:

ot (B) = S MS = 2 (0 + ) (19)

% (@(03n + %m) + B2). (20)

The reduction in the error is more difficult to assess in this case. By writing the error as:

Ega(8) = a3 (of + (8™?) + (a0} + B2 = a(8™)?),

3Since the exact distribution parameters of °¢ are not known, we use the sample mean and the sample variance.

13



we get:
iodt(8) = & Eoua(8) + 5 (a0} + 52 — a(8™)?). (21)

Analyzing the error reduction in the general case requires knowledge about the bias introduced
by each classifier. Unlike regression problems where the bias and variance contributions to
the error are additive and well-understood, in classification problems their interaction is more
complex [Friedman, 1997]. Indeed it has been observed that ensemble methods do more than
simply reduce the variance [Schapire et al., 1997].

Based on these observations and Equation 21, let us analyze extreme cases. For example,
if each classifier has the same bias, ag is reduced to zero and f = ™. In this case the error
reduction can be expressed as:

s(1—a)

Bloaa(8) = 5 (@0} + (8™ = aBlou(B) + =——(8")’,

2

where a balances the two contributions to the error. A small value for a will reduce the first
component of the error (mainly variance), while leaving the second term untouched. The net
effect will be very similar to results obtained for regression problems. In this case, it is important
to reduce classifier bias before combining (e.g., by using an overparametrized model).

If on the other hand, the biases produce a zero mean variable, we obtain 3 = 0. In this case,

the model error becomes:

s

fnsodel(/@) =« Ernrfodel(ﬂ) + 7 (U?am - (ﬂm)2)

and the error reduction will be significant if the second term is small or negative. In fact, if
the variation among the biases is small relative to their magnitude, the error will be reduced
more than in the unbiased cases. If however, the variation is large compared to the magnitude,
the error reduction will be minimal. Furthermore, if a is large and the biases are small and
highly varied, it is possible for this combiner to do worse than the individual classifiers, which
is a danger not present for regression problems. This observation very closely parallels results

reported in [Friedman, 1997].

5 Linear Combining of Ordered Classifier Outputs

In the previous section, we derived error reductions when the class posteriors are directly es-
timated through the ordered classifier outputs. Since simple averaging has also been shown to
provide benefits, in this section, we investigate the combinations of averaging and order statistics

for pooling classifier outputs.
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5.1 Spread Combiner

The first linear combination of ordered classifier outputs we study focuses on extrema. As
discussed in Section 4.2, the maximum and minimum of a set of classifier outputs carry specific
meanings. Indeed, the maximum can be viewed as the class for which there is the most evidence.
Similarly, the minimum deletes classes with little evidence. In order to avoid a single classifier
from having too large of an impact on the eventual output, these two values can be averaged to
yield the spread combiner. This combiner strikes a balance between the positive and negative

evidence, leading to a more robust combiner than either of them.

5.1.1 Spread Combiner for Unbiased Classifiers:
For a classifier without bias, the spread combiner is formally defined as:

£7@) = L (@) + 1Y) = sledn) + 07 (@). @)
where:

0" (@) = o (07N (@) + 0"V (2))

N =

The variance of n;?" () is given by:

1 1 . .
LN (g T 1 UQN:N(z) + —COU(TI%'N(HT);an'N(m))- (23)

2 2
g, _spr = —0,
i 47 ; 2

n

where cou(-,-) represents the covariance between two variables (even when the 7;‘s are inde-
pendent, ordering introduces correlations). Note that because of the ordering, the variances
in the first two terms of Equation 23 can be expressed in terms of the individual classifier
variances. Furthermore, the covariance between two order statistics can also be determined in
tabulated form for given distributions. Table 2 provides these values for a Gaussian distribution
based on [Sarhan and Greenberg, 1956]. This expression can be further simplified for symmetric

distributions where af}l:N = 0;271\,: ~ (e.g., Gaussian noise model) and leads to:

1
072151”" - 9 (a1:n + Bi,n:N) 0-72]1'(-"”)’ @)

where a,. v is the variance of the mth ordered sample and By, ;.n is the covariance between the
mith and lth ordered samples, given that the initial samples had unit variance [Sarhan and Greenberg, 1956].
Because this is a symmetric distribution, the 8 values are also symmetric (e.g., 81,2:5 = B4,5:5).

Then, using Equation 3, the variance of the boundary offset b*P" can be calculated:

2 2
o2 _ Opgeer + o
bspr  — T o
s

1 .
= 3 (1.N + Bi,N.N) OF. (25)
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Table

2: Some Reduction Factors B for the Gaussian Distribution, based

[Sarhan and Greenberg, 1956].

N kI B |N kI B |N kI B |N k!l B
2 12 .318 2,3 .189 1,4 .095 1,6 .059
3 1,2 276 |6 24 .140 15 075 1,7 049
1,3 165 2,5 106 1,6 060 1,8 040
1,2 .246 34 .183 1,7 048 1,9 031
4 13 .158 1,2 .196 1,8 .037 2,3 .154
14 .105 1,3 .132 2,3 .163 24 117
2,3 .236 14 .09 |8 24 .123 2,5 .093
1,2 .224 1,5 .077 2,5 .098 2,6 077
1,3 .148 1,6 060 26 0799 27 .063
5 14 .06 |7 1,7 .045 2,7 063 28 .052
1,5 .074 2,3 .175 34 .152 34 .142
2,3 .208 24 131 35 .121 35 .114
24 150 2,5 .102 3,6 .098 36 .093
1,2 .209 2,6 080 45 .149 3,7 077
1,3 139 34 166 1,2 178 45 137
6 14 .102 35 .130 1,3 .121 46 .113
1,5 077 1,2 .18 |9 14 .091
1,6 0568 13 .126 1,5 .073

Finally, through Equation 6, we can obtain the reduction in the model error due to the spread

combiner:

E el _ auN+BinN (26)
Emodel 2 '

Based on Equation 26 and Tables 1 and 2, Table 3 displays the error reductions provided by
the spread combiner for a Gaussian noise model (for comparison purposes, the error reduction
for the min and max combiners is also provided. Note that for the Gaussian distribution, the

error reduction of min is equal to that of max.).

16

on



Table 3: Error Reduction Factors for the Spread, min and maz Combiners with Gaussian Noise

Model.

N || spread | min or max
2 .500 .682
3 .362 .560
4 .299 .492
5 .261 .448
6 .236 416
7 219 .392
8 .205 373
9 .194 357
10 .186 344

5.1.2 Spread Combiner for Biased Classifiers:

Now, if the classifier biases are non-zero, the spread combiner’s output is given by:

spr ]' H H spr
fi" (@) =5 (FiN (@) + VN (@) = plalr) + (ni(z) + i) . (27)
In that case, the boundary offset is given by:

psPT — (Bi + mi(xp))°P" — (51 + 1 (p))°P"

k , (28)
which after expanding each term and regrouping can be expressed as:
o — (Bi + mi(2e)) "N = (B; + my (@)Y
2s
iz N:N _ iz N:N
o G mm) ™ - @ )™ 29)

The first moment of b°P" can be obtained by analyzing each term of Equation 29. In fact,
the offset introduced by the first and nth order statistic for classes ¢ and j will cancel each other

out, leaving only the average bias between the min and max components of the error (as in

B}:Niﬁ;:N_'_ﬁlgv:Niﬂ;v:N

8

Equation 17), given by %" =

The variance of b*P" needs to be derived from Equation 29. Proceeding as in Equation 18,

the variance of the spread combiner can be expressed as:

1 1 1
afspr = (Za1;N+ ZQN:N + §Bl,N:N)(Ugm +U,(23m)- (30)
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For a symmetric distribution (where ai.xy = an.n), we obtain the following error:

sor s s
Enfodel(ﬂ) = §M2 = 5(0—251”" + Mlz)
S 1 1 2 2 spr\2
= 5 ialzN + §Bl,N:N)(0'bm + aﬁm) + (IB )
1
= 5(041:N + Bi,N:N)Emoder(B) +
s s
Z(al:N + B1,N:N)(Ugm - (5m)2) + i(BSPT)Z ) (31)

which is very similar to Equation 21, where the value of a for a single order statistic is now

ai: N+B1 NN

replaced by , since the mean of the first and nth order statistic is used in the posterior

estimate.

5.2 Trimmed Means

Instead of actively using the extreme values as was the case with the spread combiner, one can
base the posterior estimate around the median values. However, instead of selecting one classifier
output as was done for f™¢?, one can use multiple classifiers whose outputs are “typical.” In this
scheme, only a certain fraction of all available classifiers are used for a given pattern. The main
advantage of this method over weighted averaging is that the set of classifiers which contribute
to the combiner vary from pattern to pattern. Furthermore, they do not need to be determined

externally, but are a function of the current pattern and the classifier responses to that pattern.

5.2.1 Trimmed Mean Combiner for Unbiased Classifiers:

Let us formally define the trimmed mean combiner (8 = 0,Vk) as follows:

. 1 .
trim — . trim
S A | E_N:If pleile) + 07" (@) (32)

where:

1
trim
nz ( ) N2 _ N1 + 1 Z nz

=Ny
The variance of n{"™(z) is given by:
N2  No
2 —_—
Onirim = (NQ—N1+1 72, 2, vl (@) m (@)
I=N1 m=N,
2 2
- W(ZUMNWZNEJRM ()0 <>)>. 3
m=N1t>m
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Again, using the factors in Tables 1 and 2, Equation 33 can be further simplified. Note that
because the Gaussian distribution is symmetric, the covariance between the kth and Ith ordered
samples is the same as that between the N +1—kth and N +1—Ith ordered samples. Therefore,
Equation 33 leads to:

No

1
2 _ 2
T S NP 2 N O
S S B (34)
(NQ_N1+ 2m Ny I>m

where an,. v is the variance of the mth ordered sample and By, ;.n is the covariance between the
mith and lth ordered samples, given that the initial samples had unit variance [Sarhan and Greenberg, 1956].
Using the theory highlighted in Section 3, and Equation 34, we obtain the following model error

reduction:

Etrzm

model _ o + 2 B . 35
Emodel (N2_N1+1 (Z mN Z Z mbN ( )

m=N; m=N1l>m

Based on Equation 35 and Tables 1 and 2, we have generated a sample trim combiner reduc-
tion table. Because there are many possibilities for N; and N5, a table that exhaustively provides
all reduction values is not practical. In this sample table we have selected N; = 2 and N, = N—1,
that is, averaging after the lowest and highest values have been removed. For comparison pur-
poses the reduction factors of the averaging combiner for N and N —2 classifiers are also provided
(for i.i.d. classifiers the reduction factors are 1/N as derived in [Tumer and Ghosh, 1996a]; sim-
ilar results were obtained for regression problems [Perrone and Cooper, 1993]). As these num-
bers demonstrate, although N — 2 classifiers are used in the trim combiner, selectively weeding
out undesirable classifiers provides reduction factors significantly better than simply averaging
N — 2 arbitrary classifiers. The trim combiner provides reduction factors comparable the the
N classifier ave combiner without being susceptible to corruption by one particularly faulty

classifier.

5.2.2 Trimmed mean Combiner for Biased Classifiers:

Now, if the classifier biases are non-zero, the trimmed mean combiner’s output is given by:

Na
Frm@) = g Y Y@ = plala) + (o) + 5)7 (36)
m=N;

In that case the boundary offset is given by:

yorim (B (@)™ — (B + (@)
S
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Table 4: Error Reduction Factors for Trim and two corresponding ave Combiners with Gaussian

Noise Model.

N || ave (for N) | trim (for Ny =2 ; Na =N —1) | ave (for N — 2)
3 333 449 1.00
4 .250 .298 .500
5 .200 227 333
6 167 184 .250
7 .143 155 200
8 125 134 167
9 A11 113 .143

The first moment of b"™ can be obtained from a manner similar to that of the spread
combiner. Indeed, each mean offset introduced by a specific order statistic for class i will be
offset by the one introduced for class j. Only the trimmed mean of the biases will remain, giving
the first moment of bt"im:

pmN — g :N

: 1
trim _ 7_ 38
g Ny — N; +1 ZN s (38)
=IN1

In deriving the variance of b!""™, we follow the same steps as in Sections 4.3 and 5.1.1. The
resulting boundary variance is similar to Equation 18, but the since the reduction is due to the

linear combination of multiple ordered outputs, « is replaced by A, where:

A= W(Z Qm:N + 2 z ZBmlN> (39)

m=N1 m=N1Il>m

The model error reduction in this case is given by:

Biiia(®) = sMa = Z(0heim + M)
= (A (@ +0B) + (57
= A Epoqa(B) + g(A ((Tﬁm (ﬂm) )+ (ﬂsp’r')2) ) (40)

Once again we need to look at the interaction between the two parts of the error reduction. The
first term provides the error reduction compared to the model error of an individual classifier.
The smaller A is, the more error reduction there will be. In the second term, on the other hand,
a small value for A is only useful if the variability in the individual biases is higher than the

biases themselves (03 > (8™)%).
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6 Experimental Results

The order statistics-based combining methods proposed in this article are tailored for situations

where one or more of the following apply:
1. Individual classifier performance is uneven and class dependent;

2. It is not possible (insufficient data, high amount of noise) to fine tune the individual

classifiers without using computationally expensive methods;
3. All the features may not be available to all the classifiers.

Such situations occur, for example, in electrical logging while drilling for oil, where data from
certain well sites almost completely misses out on portions of the problem space, and in imag-
ing from airborne platforms where the classifiers receive inputs from different satellites and/or
different types of sensors (e.g., thermal, optical, SAR). In this article we restrict ourselves to
public domain datasets and simulate such variability in two ways, namely, by
(i) segmenting the feature set and allowing individual classifiers to have access to only a limited
portion of the feature set.
(i) using “early stopping” i.e., prematurely terminating the training of the individual classifiers?.
For the experiments reported below, we used a multi-layer perceptron (MLP) with a single
hidden layer, whose weights were randomly initialized for each run. All classification results
reported in this article are test set error rates averaged over 20 runs, along with the differences
in the mean (standard deviation divided by square root of the number of runs). Several types
of simple combiners such as averaging, weighted averaging, voting, median, products, weighted
products (Bayesian), using Dempster-Schafer theory of evidence, and entropy-based averaging,
have been proposed in the literature. However, on a wide variety of data sets, it has been ob-
served that simple averaging usually provides results comparable to any of these techniques (and,
surprisingly, often better than most of them) [Ghosh et al., 1992b, Tumer and Ghosh, 1996b].
For this reason, in this study, we use the average combiner as a representative of simple com-

biners, for comparison purposes.

6.1 Variability through Segmentation

The first group of experiments focus on classifiers that because of circumstances (e.g., ge-
ography) have access to only a part of the full feature set. This situation fits the collec-

tive data mining framework wherein a globally distributed dataset is vertically partitioned

“In all the experiments reported here, “high variability” means that classifiers in an ensemble were trained half as

along as they would have been, had they been stand-alone classifiers.
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[Kargupta and Park, 2000]. Unfortunately, we are not aware of any public domain datasets
for collective data mining, so we instead selected three data sets from the Probenl/UCI bench-
marks [Prechelt, 1994]. Briefly these data sets, and the corresponding size of the MLP used,

are®:

e Card: a 51-dimensional, 2-class data set based on credit approval decision [Quinlan, 1987],

with 690 patterns; an MLP with 10 hidden units;

e Gene: a 120-dimensional data set with two classes, based on the detection of splice junc-
tions in DNA sequences [Noordewier et al., 1991], with 3175 patterns; an MLP with 10

hidden units;

o Satellite: a 36-dimensional, 6-class data set with 6435 examples of feature vectors extracted

from satellite imagery; an MLP with 20 hidden units.

These three sets were chosen as they have relatively large number of features, somewhat large
number of data points, and have been studied by several researchers. Also note that the
Probenl benchmarks are particular training, validation and test splits of the UCI data sets which
are available from URL http://www.ics.uci.edu/ mlearn/MLRepository.html. The results pre-
sented in this article are based on the first training, validation and test partition discussed
in [Prechelt, 1994], where half the data is used for training, and a quarter each for validation
and testing purposes.

We investigate two situations: one where the original features were randomly and disjointly
partitioned among the different segments, and the second where there is some overlap among
features in different segments. The exact segment count and number of features within each
segment is specified in Table 5.

For each data set, we present the original number of features, the number of new features
sets that result when the feature set is segmented (for Gene we only have two new sets, because
the low dimensionality prevents any further segmentation), and the resulting number of features
in each segment with and without overlap among the features.

A classifier trains on data from one segment, and different classifiers operate on different
segments. When the number of combiners were higher than the number of segments (N = 8)
more than on classifier (starting from a different initialization) was trained on the same features.

Tables 6-7 present the results (with the best result for each case in bold font). The misclas-
sification percentage for individual classifiers are reported in the first column. For the trimmed

mean combiner, we also provide N; and Ns, the upper and lower cutting points in the ordered

5The number of hidden units was determined experimentally.
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Table 5: Number of features in Probenl/UCI data sets

Data | Number of Original | Number of Features per Segment
Features Segments | no Overlap Overlap
Card 51 4 13-13-13-12 | 18-18-18-18
Gene 120 4 30-30-30-30 | 40-40-40-40
Sat 36 4 9-9-9-9 15-15-15-15

average used in Equation 32, obtained through the validation set.

In this case, for two of the three data sets (Gene and Card), there are striking gains due to
using order statistics combiners. One cause for these gains is the high variability in performance
among the component classifiers. In such cases, a small number of poor classifiers can corrupt
the average combiner. By their very nature, though, combiners based on order statistics are
immune to this type of corruption. The ave combiner performs well on the Sat data sets where

the performance among the individual classifiers is much more homogeneous. In this case, the

ave results are only marginally worse than those for the trimmed mean.

Table 6: Segmented Features with overlap (% misclassified +o0/+/n).

Data N Ave Max Min Spread Trim (N;-Ns)
Card 4 |12.21+.00 | 10.58 +.06 | 10.61 +.06 | 10.58 +£.00 | 12.21+.00 (3-4)
30.30+2.62 | 8 | 12.21+.00 | 10.47+.00 | 10.61+.06 | 10.47 +.00 | 10.47 + .00 (7-8)
Gene 4 | 18.52+.10 | 14.02+ .13 | 20.23+.31 14.72+ .15 16.86 + .15 (3-4)
34.80+4.01 | 8 | 18.06+.06 | 13.13+.06 | 17.59+.17 13.69+ .11 13.39+ .08 (7-8)
Sat 4 | 14.16+£.08 | 14.73+.18 14.64+ .16 14.24+.12 | 14.00 + .07 (3-4)
16.40+0.56 | 8 | 14.21+.05 | 15.27+.15 15.07+ .15 14.49+ .11 | 14.01 +.04 (3-5)

6.2 Variability through Early Stopping

For the second set of experiments we use two classes of acoustic underwater sonar signals 6.
From the original sonar signals of four different underwater objects (porpoise sound, cracking

ice and two different whale sounds), two feature sets are extracted [Ghosh et al., 1992a]:

e WOC: a 25-dimensional feature set, consisting of Gabor wavelet coefficients, temporal

descriptors and spectral measurements; and,

5Results on 6 Proben/UCI datasets were reported in [Tumer and Ghosh, 1999] and hence are not repeated here
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Table 7: Segmented Features without overlap (% misclassified +o/4/n).

Data N Ave Max Min Spread Trim (N1-Na)
Card 41 12.21+.00 | 10.49+.03 | 10.49 +.03 | 10.49 +£.03 | 12.21+.00 (3-4)
30.90+2.66 | 8 | 12.21+.00 | 10.78 £.07 10.78 £.07 | 10.52+.04 | 11.05+.00 (7-8)
Gene 4 | 2435+.13 | 15.82+.15 19.15+.22 | 14.09+.11 | 23.11+.15 (3-4)
36.87+3.01 | 8 | 23.33+.19 | 14.99+.14 16.78+.24 | 13.28 +.15 | 15.03+.17 (7-8)
Sat lap 4| 14.39+.09 | 15.66+.15 15.46 £ .11 15.11+.11 | 14.224+.07 (2-3)
17.13+£047 | 8 | 14.37£.05 | 15.93+.06 15.53+ .06 15.18 +£.10 | 14.04 +.05 (3-5)

e RDO: a 24-dimensional feature set, consisting of reflection coeflicients based on both short

and long time windows, and temporal descriptors.

For both feature sets, an MLP with 50 hidden units was used. These data sets are available at
URL http://www.lans.ece.utezas.edu. Further details about this 4-class problem can be found
in [Ghosh et al., 1992a, Tumer and Ghosh, 1996b].

Table 8: Combining Results in the Presence of High Variability in Individual Classifier Performance
for the Sonar Data (% misclassified +o/4/n).

Data N Ave Max Min Spread Trim (N1-Na)

RDO 4 | 11.57+.11 | 11.94+.12 | 11.52+.20 | 11.04 £.09 | 11.34+.14 (3-4)
13.32+0.83 | 8 | 11.64+.09 | 11.47+.11 | 11.29+.13 | 11.51+.09 | 12.30+.08 (4-5)

WwOC 4 | 880+.09 | 7.84+.10 9.31+ .12 8.54+ .06 8.43+.13 (3-4)
12.07+1.12 | 8 | 882+.08 | 7.68 +.12 8.91+ .06 8.24+ .11 7.81+ .08 (7-8)

Table 8 presents the combining results for the underwater acoustic data set when the indi-
vidual classifier performance is highly variable. The results of Table 8 as well as those given
in [Tumer and Ghosh, 1999] indicate that when the individual classifier performance is highly
variable, order statistics-based combiners (particularly the spread combiner) typically provide
better classification results than other simple combiners. This performance improvement is ob-
tained without sacrificing the simplicity of the combiner. One important thing to note, however,
is that in all cases studied, the order statistics based combiners performed at least as well as the
simple combiner, implying that no risk is taken by using this method.

A close inspection of these results reveals that using either the maz or min combiner can

provide better classification rates than ave, but it is difficult to determine which of the two will
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be more successful given a data set. A validation set may be used to select one over the other,
but in that case, potentially precious training data is used solely for determining which combiner
to use. The use of the spread combiner removes this dilemma by consistently providing results

that are comparable to, or better than, the best of the maz-min duo.

7 Concluding Remarks

In this article we present and analyze combiners based on order statistics. These combin-
ers blend the simplicity of averaging with the generality of meta-learners. They are particu-
larly effective if there are significant variations among component classifiers in at least some
parts of the joint input-output space. Variations can arise when the individual training sets
cannot be considered as random samples from a common universal data set. Examples of
such cases include real-time data acquisition and classification from geographically distributed
sources or data mining problems with large and possibly heterogenous databases, where random
subsampling is computationally expensive and practical methods lead to non-random subsam-
ples [Bradley and Fayyad, 1998]. The robustness of order statistics combiners is also helpful
when certain individual classifiers experience catastrophic failures (e.g., due to faulty sensors).

The analytical framework provided in this paper quantifies the reductions in error achieved
when an order statistics based ensemble is used. It also shows that the two methods for linear
combination of order statistics introduced in this paper provide more reliable estimates of the
true posteriors than any of the individual order statistic combiners.

The experimental results of Section 5 indicate that when there is significant variability among
the classifiers, the order statistics-based combiners substantially outperform simple combiners.
Our previous results also showed that in the absence of such variability these combiners per-
form no worse. Thus the family of order statistic combiners are applicable over a wide range
of situations. They are able to extract an appropriate amount of information from the individ-
ual classifier outputs without requiring tuning additional parameters as in meta-learners, and
without being substantially affected by outliers.

A future endeavor, which will be helpful for this work as well as for the study of collective
data mining on very large datasets in general, is to obtain a suite of public domain datasets
which are intrinsically partitioned into segments with varying quality. Though such situations
sometimes occur in practice (for example in oil logging data [Chakravarthy, 1997] and mortgage
scoring [Merz, 1998]; both data sets proprietary), they are not represented in the standard, ven-
erable databases such as UCI, ELENA and Statlog typically used by the academic community.
Perhaps the recent CRoss-Industry Standard Process for Data Mining (CRISP-DM) initiative
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will provide a satisfactory solution to this problem in the near future.
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